Synthesis of low-power DSP systems using a genetic algorithm
نویسندگان
چکیده
This paper presents a new tool for the synthesis of low-power VLSI designs, specifically, those designs targeting digital signal processing applications. The synthesis tool genetic algorithm for low-power synthesis (GALOPS) uses a genetic algorithm to apply power-reducing transformations to high-level signal-processing designs, producing designs that satisfy power requirements as well as timing and area constraints. GALOPS uses problem-specific genetic operators that are specifically tailored to incorporate VLSI-based digital signal processing design knowledge. A number of signal-processing benchmarks are used to facilitate the analysis of low-power design tools, and to aid in the comparison of results. Results demonstrate that GALOPS achieves significant power reductions in the presented benchmark designs. In addition, GALOPS produces a family of unique solutions for each design, all of which satisfy the multiple design objectives, providing flexibility to the VLSI designer.
منابع مشابه
Transformational-based Synthesis of Vlsi Based Dsp Systems for Low Power Using a Genetic Algorithm
This paper describes a technique for the synthesis of CMOS based DSP systems under multiple design constraints. The primary target of the technique is to reduce operating power by applying high level transformations to designs. During the search for a low power solution the technique considers issues at circuit and layout levels, using appropriate capacitive models, together with tracking speed...
متن کاملExergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle
In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy ti...
متن کاملExergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle
In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy ti...
متن کاملGrid Impedance Estimation Using Several Short-Term Low Power Signal Injections
In this paper, a signal processing method is proposed to estimate the low and high-frequency impedances of power systems using several short-term low power signal injections for a frequency range of 0-150 kHz. This frequency range is very important, and thusso it is considered in the analysis of power quality issues of smart grids. The impedance estimation is used in many power system applicati...
متن کاملDesign and Implementation of Digital Demodulator for Frequency Modulated CW Radar (RESEARCH NOTE)
Radar Signal Processing has been an interesting area of research for realization of programmable digital signal processor using VLSI design techniques. Digital Signal Processing (DSP) algorithms have been an integral design methodology for implementation of high speed application specific real-time systems especially for high resolution radar. CORDIC algorithm, in recent times, is turned out to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Evolutionary Computation
دوره 5 شماره
صفحات -
تاریخ انتشار 2001